- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Voisin, Thomas (4)
-
An, Ke (2)
-
Chen, Wen (2)
-
Chen, Yan (2)
-
Forien, Jean-Baptiste (2)
-
Guan, Shuai (2)
-
Ren, Jie (2)
-
Wang, Y. Morris (2)
-
Wu, Margaret (2)
-
Xie, Kelvin Y. (2)
-
Ye, Jianchao (2)
-
Barton, Nathan R (1)
-
Baumann, Theodore (1)
-
Bertsch, Kaila (1)
-
Biener, Juergen (1)
-
Biener, Monika (1)
-
Braun, Tom (1)
-
Chen, Wei (1)
-
Dong, Jiaqi (1)
-
Gao, Guanhui (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ren, Jie; Wu, Margaret; Li, Chenyang; Guan, Shuai; Dong, Jiaqi; Forien, Jean-Baptiste; Li, Tianyi; Shanks, Katherine S.; Yu, Dunji; Chen, Yan; et al (, Acta Materialia)
-
Ren, Jie; Zhang, Yin; Zhao, Dexin; Chen, Yan; Guan, Shuai; Liu, Yanfang; Liu, Liang; Peng, Siyuan; Kong, Fanyue; Poplawsky, Jonathan D.; et al (, Nature)
-
Wang, Tongshuai; Liang, Siwei; Qi, Zhen; Biener, Monika; Voisin, Thomas; Hammons, Joshua A.; Tran, Ich C.; Worsley, Marcus A.; Braun, Tom; Wang, Y. Morris; et al (, Materials Horizons)Multi-functional membranes with high permeance and selectivity that can mimic nature's designs have tremendous industrial and bio-medical applications. Here, we report a novel concept of a 3D nanometer (nm)-thin membrane that can overcome the shortcomings of conventional membrane structures. Our 3D membrane is composed of two three-dimensionally interwoven channels that are separated by a continuous nm-thin amorphous TiO 2 layer. This 3D architecture dramatically increases the surface area by 6000 times, coupled with an ultra-short diffusion distance through the 2 – 4 nm-thin selective layer that allows for ultrafast gas and water transport, ∼900 l m −2 h −1 bar −1 . The 3D membrane also exhibits a very high ion rejection ( R ∼ 100% for potassium ferricyanide) due to the combined size- and charge-based exclusion mechanisms. The combination of high ion rejection and ultrafast permeation makes our 3DM superior to the state-of-the-art high-flux membranes whose performances are limited by the flux-rejection tradeoff. Furthermore, its ultimate Li + selectivity over polysulfide or gas can potentially solve major technical challenges in energy storage applications, such as lithium – sulfur or lithium – O 2 batteries.more » « less
An official website of the United States government
